Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Am J Hematol ; 98(8): 1204-1213, 2023 08.
Article in English | MEDLINE | ID: covidwho-2315755

ABSTRACT

Data on the effect of booster SARS-CoV-2 vaccination are mainly focused on humoral immunogenicity, while the kinetics of vaccine-induced cellular response and its correlation with effectiveness in hematologic patients are less explored. Our aim was to evaluate the longitudinal cellular and humoral immunogenicity induced by two and three doses of the mRNA-1273 SARS-CoV-2 vaccine in 270 patients with hematologic malignancies, and its relationship with the severity of breakthrough SARS-CoV-2 infection. Results indicate that at 23 weeks after the second dose, the seroconversion rate declined from 68.5% to 59.3%, with a reduction in median anti-S titers from 1577 to 456 BAU/mL, mainly in patients over 65 years of age or chronic lymphocytic leukemia (CLL) patients undergoing active therapy. Cellular immunogenicity, however, remained positive in 84.4% of cases. A third vaccine dose seroconverted 42.7% (41/96) and triggered cellular response in 36.7% (11/30) of previously negative patients. Notably, only 7.2% (15/209) of patients failed to develop both humoral and cellular response. Active therapy, anti-CD20 antibodies, lymphopenia, hypogammaglobulinemia, and low CD19+ cell count were associated with poor humoral response, while active disease, GvHD immunosuppressive therapy, lymphopenia, and low CD3+ , CD4+ , CD56+ cell count determined an impaired cellular response. After 13.8 months of follow-up, the incidence of SARS-CoV-2 infection was 24.8% (67/270), including 6 (9%) severe/critical cases associated with a weaker cellular (median interferon gamma (IFN-γ) 0.19 vs. 0.35 IU/mL) and humoral response (median anti-S titer <4.81 vs. 788 BAU/mL) than asymptomatic/mild cases. In conclusion, SARS-CoV-2 booster vaccination improves humoral response and COVID-19 severity is associated with impaired vaccine-induced immunogenicity.


Subject(s)
COVID-19 , Hematologic Neoplasms , Lymphopenia , Humans , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Hematologic Neoplasms/therapy , Antibodies , Antibodies, Viral
2.
Genome Med ; 14(1): 134, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2139391

ABSTRACT

BACKGROUND: COVID-19 manifests with a wide spectrum of clinical phenotypes, ranging from asymptomatic and mild to severe and critical. Severe and critical COVID-19 patients are characterized by marked changes in the myeloid compartment, especially monocytes. However, little is known about the epigenetic alterations that occur in these cells during hyperinflammatory responses in severe COVID-19 patients. METHODS: In this study, we obtained the DNA methylome and transcriptome of peripheral blood monocytes from severe COVID-19 patients. DNA samples extracted from CD14 + CD15- monocytes of 48 severe COVID-19 patients and 11 healthy controls were hybridized on MethylationEPIC BeadChip arrays. In parallel, single-cell transcriptomics of 10 severe COVID-19 patients were generated. CellPhoneDB was used to infer changes in the crosstalk between monocytes and other immune cell types. RESULTS: We observed DNA methylation changes in CpG sites associated with interferon-related genes and genes associated with antigen presentation, concordant with gene expression changes. These changes significantly overlapped with those occurring in bacterial sepsis, although specific DNA methylation alterations in genes specific to viral infection were also identified. We also found these alterations to comprise some of the DNA methylation changes occurring during myeloid differentiation and under the influence of inflammatory cytokines. A progression of DNA methylation alterations in relation to the Sequential Organ Failure Assessment (SOFA) score was found to be related to interferon-related genes and T-helper 1 cell cytokine production. CellPhoneDB analysis of the single-cell transcriptomes of other immune cell types suggested the existence of altered crosstalk between monocytes and other cell types like NK cells and regulatory T cells. CONCLUSION: Our findings show the occurrence of an epigenetic and transcriptional reprogramming of peripheral blood monocytes, which could be associated with the release of aberrant immature monocytes, increased systemic levels of pro-inflammatory cytokines, and changes in immune cell crosstalk in these patients.


Subject(s)
COVID-19 , Monocytes , Humans , Transcriptome , Cytokines , COVID-19/genetics , Interferons , Antiviral Agents , Epigenesis, Genetic
4.
Med Clin (Engl Ed) ; 159(3): 116-123, 2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-2015835

ABSTRACT

Background: It is crucial to assess the levels of protection generated by natural infection or SARS-CoV-2 vaccines, mainly in individuals professionally exposed and in vulnerable groups. Measuring T-cell responses may complement antibody tests currently in use as correlates of protection. Our aim was to assess the feasibility of a validated assay of T-cell responses. Methods: Twenty health-care-workers (HCW) were included. Antibody test to SARS-CoV-2 N and S-proteins in parallel with a commercially available whole-blood-interferon-gamma-release-assay (IGRA) to S-peptides and two detection methods, CLIA and ELISA were determined. Results: IGRA test detected T-cell responses in naturally exposed and vaccinated HCW already after first vaccination dose. The correlation by the two detection methods was very high (R > 0.8) and sensitivity and specificity ranged between 100 and 86% and 100-73% respectively. Even though there was a very high concordance between specific antibody levels and the IGRA assay in the ability to detect immune response to SARS-CoV-2, there was a relatively low quantitative correlation. In the small group primed by natural infection, one vaccine dose was sufficient to reach immune response plateau. IGRA was positive in one, with Ig(S) antibody negative vaccinated immunosuppressed HCW illustrating another advantage of the IGRA-test. Conclusion: Whole-blood-IGRA-tests amenable to automation and constitutes a promising additional tool for measuring the state of the immune response to SARS-CoV-2; they are applicable to large number of samples and may become a valuable correlate of protection to COVID-19, particularly for vulnerable groups at risk of being re-exposed to infection, as are health-care-workers.


Introducción: Es fundamental evaluar los niveles de protección inmune en infectados o tras la vacunación frente a SARS-CoV-2. La cuantificación de la respuesta inmune celular T puede complementar la determinación de anticuerpos. Evaluamos la viabilidad de un ensayo comercial validado de respuesta celular T específica frente a SARS-CoV-2. Métodos: Se incluyeron veinte trabajadores sanitarios (TS). Medimos anticuerpos contra las proteínas N y S de SARS-CoV-2 y realizamos el ensayo de liberación de interferón-gamma (IFNγ) en sangre completa (IGRA) frente a péptidos de la proteína S. IFNγ se determinó mediante dos métodos de detección: CLIA y ELISA. Resultados: IGRA detectó respuesta celular T en TS tanto infectados como vacunados. La correlación de los dos métodos de detección de IFNγ fue muy alta (R >0,8) y la sensibilidad y la especificidad variaron entre 100 y 86% y 100-73% respectivamente. Hubo una concordancia muy alta entre los niveles de anticuerpos específicos y el ensayo IGRA aunque la correlación cuantitativa fue relativamente baja. En el grupo de infectados, una dosis de vacuna fue suficiente para alcanzar el «plateau¼ de respuesta inmune. IGRA fue claramente positivo en un profesional vacunado inmunosuprimido que presentaba anticuerpos contra la proteína S negativos. Conclusiones: IGRA frente a péptidos de la proteína-S es susceptible de automatización y constituye una herramienta prometedora para medir la respuesta inmune celular frente a SARS-CoV-2; es aplicable a un gran número de muestras y puede servir para valorar la protección, particularmente en los grupos vulnerables en riesgo de volver a exponerse a la infección, como los TS.

5.
Medicina clinica (English ed.) ; 159(3):116-123, 2022.
Article in English | EuropePMC | ID: covidwho-1999095

ABSTRACT

Background It is crucial to assess the levels of protection generated by natural infection or SARS-CoV-2 vaccines, mainly in individuals professionally exposed and in vulnerable groups. Measuring T-cell responses may complement antibody tests currently in use as correlates of protection. Our aim was to assess the feasibility of a validated assay of T-cell responses. Methods Twenty health-care-workers (HCW) were included. Antibody test to SARS-CoV-2 N and S-proteins in parallel with a commercially available whole-blood-interferon-gamma-release-assay (IGRA) to S-peptides and two detection methods, CLIA and ELISA were determined. Results IGRA test detected T-cell responses in naturally exposed and vaccinated HCW already after first vaccination dose. The correlation by the two detection methods was very high (R > 0.8) and sensitivity and specificity ranged between 100 and 86% and 100-73% respectively. Even though there was a very high concordance between specific antibody levels and the IGRA assay in the ability to detect immune response to SARS-CoV-2, there was a relatively low quantitative correlation. In the small group primed by natural infection, one vaccine dose was sufficient to reach immune response plateau. IGRA was positive in one, with Ig(S) antibody negative vaccinated immunosuppressed HCW illustrating another advantage of the IGRA-test. Conclusion Whole-blood-IGRA-tests amenable to automation and constitutes a promising additional tool for measuring the state of the immune response to SARS-CoV-2;they are applicable to large number of samples and may become a valuable correlate of protection to COVID-19, particularly for vulnerable groups at risk of being re-exposed to infection, as are health-care-workers.

6.
Front Immunol ; 13: 902837, 2022.
Article in English | MEDLINE | ID: covidwho-1952333

ABSTRACT

Background: Two years since the onset of the COVID-19 pandemic no predictive algorithm has been generally adopted for clinical management and in most algorithms the contribution of laboratory variables is limited. Objectives: To measure the predictive performance of currently used clinical laboratory tests alone or combined with clinical variables and explore the predictive power of immunological tests adequate for clinical laboratories. Methods: Data from 2,600 COVID-19 patients of the first wave of the pandemic in the Barcelona area (exploratory cohort of 1,579, validation cohorts of 598 and 423 patients) including clinical parameters and laboratory tests were retrospectively collected. 28-day survival and maximal severity were the main outcomes considered in the multiparametric classical and machine learning statistical analysis. A pilot study was conducted in two subgroups (n=74 and n=41) measuring 17 cytokines and 27 lymphocyte phenotypes respectively. Findings: 1) Despite a strong association of clinical and laboratory variables with the outcomes in classical pairwise analysis, the contribution of laboratory tests to the combined prediction power was limited by redundancy. Laboratory variables reflected only two types of processes: inflammation and organ damage but none reflected the immune response, one major determinant of prognosis. 2) Eight of the thirty variables: age, comorbidity index, oxygen saturation to fraction of inspired oxygen ratio, neutrophil-lymphocyte ratio, C-reactive protein, aspartate aminotransferase/alanine aminotransferase ratio, fibrinogen, and glomerular filtration rate captured most of the combined statistical predictive power. 3) The interpretation of clinical and laboratory variables was moderately improved by grouping them in two categories i.e., inflammation related biomarkers and organ damage related biomarkers; Age and organ damage-related biomarker tests were the best predictors of survival, and inflammatory-related ones were the best predictors of severity. 4) The pilot study identified immunological tests (CXCL10, IL-6, IL-1RA and CCL2), that performed better than most currently used laboratory tests. Conclusions: Laboratory tests for clinical management of COVID 19 patients are valuable but limited predictors due to redundancy; this limitation could be overcome by adding immunological tests with independent predictive power. Understanding the limitations of tests in use would improve their interpretation and simplify clinical management but a systematic search for better immunological biomarkers is urgent and feasible.


Subject(s)
COVID-19 , Biomarkers , Cohort Studies , Humans , Inflammation , Laboratories, Clinical , Pandemics , Pilot Projects , Retrospective Studies , SARS-CoV-2
7.
Mult Scler ; 28(7): 1138-1145, 2022 06.
Article in English | MEDLINE | ID: covidwho-1861995

ABSTRACT

BACKGROUND: The effect of disease-modifying therapies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine response is unclear. OBJECTIVES: We aim to determine the immunological responses to SARS-CoV-2 in multiple sclerosis (MS) and anti-CD20-treated patients with other autoimmune diseases (AID). METHODS: Humoral and cellular responses we determined before and 30-90 days after vaccination in patients with MS and anti-CD20-treated patients with other AID in two Catalan centers. RESULTS: 457 patients were enrolled. Findings showed that humoral response decreased under anti-CD20s or sphingosine 1-phosphate receptor modulators (S1PRM) and with longer treatment duration and increased after 4.5 months from the last anti-CD20 infusion. Cellular response decreased in S1PRM-treated. Patients on anti-CD20 can present cellular responses even in the absence of antibodies. CONCLUSION: Anti-CD20s and S1PRM modify the immunological responses to SARS-CoV-2 vaccines.


Subject(s)
COVID-19 , Multiple Sclerosis , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Multiple Sclerosis/drug therapy , SARS-CoV-2 , Vaccination
8.
BMC Med ; 20(1): 129, 2022 03 29.
Article in English | MEDLINE | ID: covidwho-1833313

ABSTRACT

BACKGROUND: SARS-CoV-2 infection portends a broad range of outcomes, from a majority of asymptomatic cases to a lethal disease. Robust correlates of severe COVID-19 include old age, male sex, poverty, and co-morbidities such as obesity, diabetes, and cardiovascular disease. A precise knowledge of the molecular and biological mechanisms that may explain the association of severe disease with male sex is still lacking. Here, we analyzed the relationship of serum testosterone levels and the immune cell skewing with disease severity in male COVID-19 patients. METHODS: Biochemical and hematological parameters of admission samples in 497 hospitalized male and female COVID-19 patients, analyzed for associations with outcome and sex. Longitudinal (in-hospital course) analyses of a subcohort of 114 male patients were analyzed for associations with outcome. Longitudinal analyses of immune populations by flow cytometry in 24 male patients were studied for associations with outcome. RESULTS: We have found quantitative differences in biochemical predictors of disease outcome in male vs. female patients. Longitudinal analyses in a subcohort of male COVID-19 patients identified serum testosterone trajectories as the strongest predictor of survival (AUC of ROC = 92.8%, p < 0.0001) in these patients among all biochemical parameters studied, including single-point admission serum testosterone values. In lethal cases, longitudinal determinations of serum luteinizing hormone (LH) and androstenedione levels did not follow physiological feedback patterns. Failure to reinstate physiological testosterone levels was associated with evidence of impaired T helper differentiation and augmented circulating classical monocytes. CONCLUSIONS: Recovery or failure to reinstate testosterone levels is strongly associated with survival or death, respectively, from COVID-19 in male patients. Our data suggest an early inhibition of the central LH-androgen biosynthesis axis in a majority of patients, followed by full recovery in survivors or a peripheral failure in lethal cases. These observations are suggestive of a significant role of testosterone status in the immune responses to COVID-19 and warrant future experimental explorations of mechanistic relationships between testosterone status and SARS-CoV-2 infection outcomes, with potential prophylactic or therapeutic implications.


Subject(s)
COVID-19 , Androgens , Female , Humans , Luteinizing Hormone/metabolism , Male , SARS-CoV-2 , Testosterone
9.
Front Immunol ; 13: 881206, 2022.
Article in English | MEDLINE | ID: covidwho-1809410

ABSTRACT

SASH3 is a lymphoid-specific adaptor protein. In a recent study, SASH3 deficiency was described as a novel X-linked combined immunodeficiency with immune dysregulation, associated with impaired TCR signaling and thymocyte survival in humans. The small number of patients reported to date showed recurrent sinopulmonary, cutaneous and mucosal infections, and autoimmune cytopenia. Here we describe an adult patient previously diagnosed with common variable immunodeficiency (CVID) due to low IgG and IgM levels and recurrent upper tract infections. Two separate, severe viral infections drew our attention and pointed to an underlying T cell defect: severe varicella zoster virus (VZV) infection at the age of 4 years and bilateral pneumonia due type A influenza infection at the age of 38. Genetic testing using an NGS-based custom-targeted gene panel revealed a novel hemizygous loss-of-function variant in the SASH3 gene (c.505C>T/p.Gln169*). The patient's immunological phenotype included marked B cell lymphopenia with reduced pre-switch and switch memory B cells, decreased CD4+ and CD8+ naïve T cells, elevated CD4+ and CD8+ TEMRA cells, and abnormal T cell activation and proliferation. The patient showed a suboptimal response to Streptococcus pneumoniae (polysaccharide) vaccine, and a normal response to Haemophilus influenzae type B (conjugate) vaccine and SARS-CoV-2 (RNA) vaccine. In summary, our patient has a combined immunodeficiency, although he presented with a phenotype resembling CVID. Two severe episodes of viral infection alerted us to a possible T-cell defect, and genetic testing led to SASH3 deficiency. Our patient displays a milder phenotype than has been reported previously in these patients, thus expanding the clinical spectrum of this recently identified inborn error of immunity.


Subject(s)
COVID-19 , Common Variable Immunodeficiency , Primary Immunodeficiency Diseases , Vaccines , Common Variable Immunodeficiency/diagnosis , Common Variable Immunodeficiency/genetics , Humans , Male , SARS-CoV-2
10.
Neurol Neuroimmunol Neuroinflamm ; 9(2)2022 03.
Article in English | MEDLINE | ID: covidwho-1745397

ABSTRACT

BACKGROUND AND OBJECTIVES: Information about humoral and cellular responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and antibody persistence in convalescent (COVID-19) patients with multiple sclerosis (PwMS) is scarce. The objectives of this study were to investigate factors influencing humoral and cellular responses to SARS-CoV-2 and its persistence in convalescent COVID-19 PwMS. METHODS: This is a retrospective study of confirmed COVID-19 convalescent PwMS identified between February 2020 and May 2021 by SARS-CoV-2 antibody testing. We examined relationships between demographics, MS characteristics, disease-modifying therapy (DMT), and humoral (immunoglobulin G against spike and nucleocapsid proteins) and cellular (interferon-gamma [IFN-γ]) responses to SARS-CoV-2. RESULTS: A total of 121 (83.45%) of 145 PwMS were seropositive, and 25/42 (59.5%) presented a cellular response up to 13.1 months after COVID-19. Anti-CD20-treated patients had lower antibody titers than those under other DMTs (p < 0.001), but severe COVID-19 and a longer time from last infusion increased the likelihood of producing a humoral response. IFN-γ levels did not differ among DMT. Five of 7 (71.4%) anti--CD20-treated seronegative patients had a cellular response. The humoral response persisted for more than 6 months in 41/56(81.13%) PwMS. In multivariate analysis, seropositivity decreased due to anti-CD20 therapy (OR 0.08 [95% CI 0.01-0.55]) and increased in males (OR 3.59 [1.02-12.68]), whereas the cellular response decreased in those with progressive disease (OR 0.04 [0.001-0.88]). No factors were associated with antibody persistence. DISCUSSION: Humoral and cellular responses to SARS-CoV-2 are present in COVID-19 convalescent PwMS up to 13.10 months after COVID-19. The humoral response decreases under anti-CD20 treatment, although the cellular response can be detected in anti-CD20-treated patients, even in the absence of antibodies.


Subject(s)
COVID-19/immunology , Immunity, Cellular , Immunity, Humoral , Multiple Sclerosis/immunology , Adult , Aged , Antibodies, Viral/analysis , Antigens, CD20/immunology , COVID-19/complications , Female , Humans , Immunoglobulin G/analysis , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Male , Middle Aged , Multiple Sclerosis/complications , Nucleocapsid/chemistry , Nucleocapsid/immunology , Retrospective Studies
11.
Blood Adv ; 6(3): 774-784, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1542101

ABSTRACT

Recent studies have shown a suboptimal humoral response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccines in patients diagnosed with hematologic malignancies; however, data about cellular immunogenicity are scarce. The aim of this study was to evaluate both the humoral and cellular immunogenicity 1 month after the second dose of the mRNA-1273 vaccine. Antibody titers were measured by using the Elecsys and LIAISON anti-SARS-CoV-2 S assays, and T-cell response was assessed by using interferon-γ release immunoassay technology. Overall, 76.3% (184 of 241) of patients developed humoral immunity, and the cellular response rate was 79% (184 of 233). Hypogammaglobulinemia, lymphopenia, active hematologic treatment, and anti-CD20 therapy during the previous 6 months were associated with an inferior humoral response. Conversely, age >65 years, active disease, lymphopenia, and immunosuppressive treatment of graft-versus-host disease (GVHD) were associated with an impaired cellular response. A significant dissociation between the humoral and cellular responses was observed in patients treated with anti-CD20 therapy (the humoral response was 17.5%, whereas the cellular response was 71.1%). In these patients, B-cell aplasia was confirmed while T-cell counts were preserved. In contrast, humoral response was observed in 77.3% of patients undergoing immunosuppressive treatment of GVHD, whereas only 52.4% had a cellular response. The cellular and humoral responses to the SARS-CoV-2 mRNA-1273 vaccine in patients with hematologic malignancies are highly influenced by the presence of treatments such as anti-CD20 therapy and immunosuppressive agents. This observation has implications for the further management of these patients.


Subject(s)
COVID-19 , Hematologic Neoplasms , 2019-nCoV Vaccine mRNA-1273 , Aged , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , Hematologic Neoplasms/therapy , Humans , Immunogenicity, Vaccine , RNA, Messenger/genetics , SARS-CoV-2
12.
Journal of Computational Biophysics & Chemistry ; : 1-11, 2021.
Article in English | Academic Search Complete | ID: covidwho-1523069

ABSTRACT

Introduction: Turmeric rhizome (<italic>Cucurma longa</italic> L.) has showed great potential as a traditional drug in folk medicine of several countries. In light of the prominent use of turmeric rhizome in treating both respiratory and viral diseases, we aimed to dock major compounds from the essential oil of turmeric against three key proteins involved in COVID-19 cell entry and replication. Methods: The essential oil of turmeric rhizome was obtained using a hydrodistillation technique, and the chemical characterization of the oil was investigated using GC-MS/GC-FID. Then, main compounds were docked with the key proteins of COVID-19. Results: A total of 26 components were identified in the essential oil extracted from the rhizomes <italic>via</italic> GC-MS/GC-FID. Seven dominant compounds (turmerone (31.4%), ar-turmerone (16.1%), turmerol (14.6%), terpinolene (11.0%), α-zingiberene (5.2%), β-sesquiphellandrene (4.8%), and β-caryophyllene (3.5%)) were docked against COVID-19 main protease, papain-like protease (PLpro), spike protein and 3C-like protease (3CLpro), and the best inhibitor was picked according to the calculated binding affinity and non-bonding interactions with the protein active site. β-sesquiphellandrene and α-zingiberene showed highest besides the same binding affinity towards COVID-19 virus (−6.38 and −6.39kcal/mol, respectively). α-zingiberene was found to bind at the active site of the COVID-19 protein and interacted with different non-bonding interactions, while turmerol showed the highest affinity (−5.78kcal/mol) against CLpro enzyme by binding with Met165, Leu141, Met49, Ser144, Cys145, and Glu166 residues. Conclusion: The essential oil of turmeric harbors a blend of potentially bioactive compounds that may be considered as a good target against COVID-19 virus and warrants further experimental studies. [ABSTRACT FROM AUTHOR] Copyright of Journal of Computational Biophysics & Chemistry is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

13.
Med Clin (Barc) ; 159(3): 116-123, 2022 08 12.
Article in English, Spanish | MEDLINE | ID: covidwho-1474887

ABSTRACT

BACKGROUND: It is crucial to assess the levels of protection generated by natural infection or SARS-CoV-2 vaccines, mainly in individuals professionally exposed and in vulnerable groups. Measuring T-cell responses may complement antibody tests currently in use as correlates of protection. Our aim was to assess the feasibility of a validated assay of T-cell responses. METHODS: Twenty health-care-workers (HCW) were included. Antibody test to SARS-CoV-2 N and S-proteins in parallel with a commercially available whole-blood-interferon-gamma-release-assay (IGRA) to S-peptides and two detection methods, CLIA and ELISA were determined. RESULTS: IGRA test detected T-cell responses in naturally exposed and vaccinated HCW already after first vaccination dose. The correlation by the two detection methods was very high (R>0.8) and sensitivity and specificity ranged between 100 and 86% and 100-73% respectively. Even though there was a very high concordance between specific antibody levels and the IGRA assay in the ability to detect immune response to SARS-CoV-2, there was a relatively low quantitative correlation. In the small group primed by natural infection, one vaccine dose was sufficient to reach immune response plateau. IGRA was positive in one, with Ig(S) antibody negative vaccinated immunosuppressed HCW illustrating another advantage of the IGRA-test. CONCLUSION: Whole-blood-IGRA-tests amenable to automation and constitutes a promising additional tool for measuring the state of the immune response to SARS-CoV-2; they are applicable to large number of samples and may become a valuable correlate of protection to COVID-19, particularly for vulnerable groups at risk of being re-exposed to infection, as are health-care-workers.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19 Vaccines , Health Personnel , Humans , Peptides , Pilot Projects , T-Lymphocytes
14.
Infection ; 49(6): 1265-1275, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1453923

ABSTRACT

INTRODUCTION: Kidney transplant recipients and patients on the waiting list for kidney transplant who acquire SARS-CoV-2 infection are at serious risk of developing severe COVID-19, with an increased risk of mortality for the their immunosuppressive state; other risk factors for mortality have been identified in some comorbidities such as obesity, diabetes, asthma and chronic lung disease. MATERIALS AND METHODS: The COVID-19 pandemic has led to a sharp reduction in kidney transplants in most countries, mainly due to the concern of patients on the waiting list for their potential increased susceptibility to acquire SARS-CoV-2 infection in healthcare facilities and for the difficulties of transplant centers to ensure full activity as hospitals have had to focus most of their attention on COVID-19 patients. Indeed, while the infection curve continued its exponential rise, there was a vertical decline in kidney donation/transplant activity. CONCLUSION: This review article focuses on the damage induced by SARS-CoV-2 infection on kidney and on the adverse effect of this pandemic on the entire kidney transplant sector.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Pandemics , SARS-CoV-2 , Transplant Recipients
15.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 19.
Article in English | MEDLINE | ID: covidwho-1305767

ABSTRACT

To date, the leading causes of mortality and morbidity worldwide include viral infections, such as Ebola, influenza virus, acquired immunodeficiency syndrome (AIDS), severe acute respiratory syndrome (SARS) and recently COVID-19 disease, caused by the SARS-CoV-2 virus. Currently, we can count on a narrow range of antiviral drugs, especially older generation ones like ribavirin and interferon which are effective against viruses in vitro but can often be ineffective in patients. In addition to these, we have antiviral agents for the treatment of herpes virus, influenza virus, HIV and hepatitis virus. Recently, drugs used in the past especially against ebolavirus, such as remdesivir and favipiravir, have been considered for the treatment of COVID-19 disease. However, even if these drugs represent important tools against viral diseases, they are certainly not sufficient to defend us from the multitude of viruses present in the environment. This represents a huge problem, especially considering the unprecedented global threat due to the advancement of COVID-19, which represents a potential risk to the health and life of millions of people. The demand, therefore, for new and effective antiviral drugs is very high. This review focuses on three fundamental points: (1) presents the main threats to human health, reviewing the most widespread viral diseases in the world, thus describing the scenario caused by the disease in question each time and evaluating the specific therapeutic remedies currently available. (2) It comprehensively describes main phytochemical classes, in particular from plant foods, with proven antiviral activities, the viruses potentially treated with the described phytochemicals. (3) Consideration of the various applications of drug delivery systems in order to improve the bioavailability of these compounds or extracts. A PRISMA flow diagram was used for the inclusion of the works. Taking into consideration the recent dramatic events caused by COVID-19 pandemic, the cry of alarm that denounces critical need for new antiviral drugs is extremely strong. For these reasons, a continuous systematic exploration of plant foods and their phytochemicals is necessary for the development of new antiviral agents capable of saving lives and improving their well-being.

16.
Cephalalgia ; 40(13): 1410-1421, 2020 11.
Article in English | MEDLINE | ID: covidwho-1088416

ABSTRACT

OBJECTIVE: To define headache characteristics and evolution in relation to COVID-19 and its inflammatory response. METHODS: This is a prospective study, comparing clinical data and inflammatory biomarkers of COVID-19 patients with and without headache, recruited at the Emergency Room. We compared baseline with 6-week follow-up to evaluate disease evolution. RESULTS: Of 130 patients, 74.6% (97/130) had headache. In all, 24.7% (24/97) of patients had severe pain with migraine-like features. Patients with headache had more anosmia/ageusia (54.6% vs. 18.2%; p < 0.0001). Clinical duration of COVID-19 was shorter in the headache group (23.9 ± 11.6 vs. 31.2 ± 12.0 days; p = 0.028). In the headache group, IL-6 levels were lower at the ER (22.9 (57.5) vs. 57.0 (78.6) pg/mL; p = 0.036) and more stable during hospitalisation. After 6 weeks, of 74 followed-up patients with headache, 37.8% (28/74) had ongoing headache. Of these, 50% (14/28) had no previous headache history. Headache was the prodromal symptom of COVID-19 in 21.4% (6/28) of patients with persistent headache (p = 0.010). CONCLUSIONS: Headache associated with COVID-19 is a frequent symptom, predictive of a shorter COVID-19 clinical course. Disabling headache can persist after COVID-19 resolution. Pathophysiologically, its migraine-like features may reflect an activation of the trigeminovascular system by inflammation or direct involvement of SARS-CoV-2, a hypothesis supported by concomitant anosmia.


Subject(s)
Coronavirus Infections/complications , Headache/virology , Pneumonia, Viral/complications , Adult , Aged , Betacoronavirus , Biomarkers/blood , COVID-19 , Coronavirus Infections/immunology , Female , Headache/epidemiology , Humans , Inflammation/blood , Inflammation/virology , Male , Middle Aged , Pandemics , Pneumonia, Viral/immunology , Prodromal Symptoms , Prospective Studies , SARS-CoV-2
17.
PLoS One ; 15(12): e0244627, 2020.
Article in English | MEDLINE | ID: covidwho-999847

ABSTRACT

BACKGROUND AND AIMS: Identification of SARS-CoV-2-infected patients at high-risk of poor prognosis is crucial. We aimed to establish predictive models for COVID-19 pneumonia severity in hospitalized patients. METHODS: Retrospective study of 430 patients admitted in Vall d'Hebron Hospital (Barcelona) between 03-12-2020 and 04-28-2020 due to COVID-19 pneumonia. Two models to identify the patients who required high-flow-oxygen-support were generated, one using baseline data and another with also follow-up analytical results. Calibration was performed by a 1000-bootstrap replication model. RESULTS: 249 were male, mean age 57.9 years. Overall, 135 (31.4%) required high-flow-oxygen-support. The baseline predictive model showed a ROC of 0.800 based on: SpO2/FiO2 (adjusted Hazard Ratio-aHR = 8), chest x-ray (aHR = 4), prior immunosuppressive therapy (aHR = 4), obesity (aHR = 2), IL-6 (aHR = 2), platelets (aHR = 0.5). The cut-off of 11 presented a specificity of 94.8%. The second model included changes on the analytical parameters: ferritin (aHR = 7.5 if ≥200ng/mL) and IL-6 (aHR = 18 if ≥64pg/mL) plus chest x-ray (aHR = 2) showing a ROC of 0.877. The cut-off of 12 exhibited a negative predictive value of 92%. CONCLUSIONS: SpO2/FiO2 and chest x-ray on admission or changes on inflammatory parameters as IL-6 and ferritin allow us early identification of COVID-19 patients at risk of high-flow-oxygen-support that may benefit from a more intensive disease management.


Subject(s)
COVID-19/diagnosis , COVID-19/pathology , Pneumonia/diagnosis , Pneumonia/pathology , Female , Hospitalization , Humans , Male , Middle Aged , Prognosis , Proportional Hazards Models , Retrospective Studies , SARS-CoV-2/pathogenicity , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL